
• Expressions are a fundamental building block in programs

• Expressions are analogous to the idea of clauses in English
• Single clause sentence: 

"I am a student."
• Multiple clause sentence:

"I am a student and I am currently in COMP110."
• In English, prose is more expressive through the creative use of clauses

• In code, programs are more expressive through creative uses of expressions!



There are two big ideas behind expressions:

1. Every expression evaluates to a single value at runtime 
• Thus, every expression has a single type.
• This occurs only when the program runs (runtime) and when 

the processor evaluates the expression.

2. Anywhere you can write an expression you can 
substitute any other expression of the same type



• Literal Values
▪ 110
▪ 3.14
▪ True
▪ "hi"

• Variable Access
▪ x
▪ comp_course_number

• "Unary" operators
▪ -x (number negation)
▪ not True (boolean negation)

• Function Calls
▪ abs(x) - absolute value of x

• "Binary" Operators
• Arithmetic

▪ 1 + 2

• Concatenation
▪ "Hello " + name

• Equality 
▪ x == 1
▪ x != 1

• Relational
• age >= 21
• age < 13



• When you have a value of one type but need to use it as another type

• A type casting expression can help you convert between types:

• Examples:
• evaluates to the string value 
• evaluates to the string value 
• evaluates to the integer value 
• evaluates to the floating-point value 
• evaluates to the integer

• float to integer conversions truncate, or get rid of, the decimal component "rounds down"

• Warning: if a value cannot be cast to the desired type a ValueError will result.
• Try: 

• In Python, a type casting expression is a special function call we'll discuss soon!
5


