
• Variables allow your programs to
store, load, and change values in memory.

• Every variable:

1. has a name and
2. is bound to a value of a specific data type

Current Scope

age
int

20

1. Declare the variable with name & type
2. Initialize / Assign variable its first value

(Steps 1 and 2 can be combined!)

Once 1 and 2 are done, then you can*:
• Access the value stored in a variable, or,
• Reassign new values to the variable

* There are additional rules governing where you can
access and assign a variable from.

Declare

Initialize / Assign

Access / "Read" Reassign / "Write"

• When you declare a variable, you are proclaiming...
Ѧhenceforth, the identifier <some name> shall refer to a(n)
<some t^pe> value stored in memor^ѧ

age: int
• Ѧthe identifier age shall refer to an int value stored in memor^.ѧ

• General form:
[identifier]: [type]

• The type can be: int, float, str, bool
(and more types to come)

5

Variable names are an example of an identifier.

Identifiers cannot contain spaces, must begin with a letter or underscore, and
contain only letters, numbers, and underscores.

In Python, it is traditional to use for multiword variable names.

For example, a variable to store "year of birth" would be named:

6

• The assignment statement binds a value to a variable

• Ѧage is bound to the value 21ѧ
• "age is assigned 21"
• Ѧage takes the value of 21ѧ
• Ѧage is now 21ѧ
• Notice: None of Yhese readings Zses Yhe \ord ѦeqZalsѧ!

• General form:

• The single equal symbol's name is the assignment operator.
7

8

When this line of code runs:
age = 20

The identifier age is bound to a space in
memory holding the value 20.

Later, if the following line ran:
age = 21

The identifier age is now bound to a space
in memory holding the value 21.

Assignment is not equality!

Current Scope - after age = 20 evaluates

age 20

Current Scope - after age = 21 evaluates

age 21

• A [ariableѣs [alZe can change as the program runs
• Just assign another value to the same variable!
• After an assignment statement evaluates, when a subsequent line of code accesses

the variable it will have the most recently assigned value.

• The assignment operator is not commutative!
[identifier] = [expression] # OK
[expression] = [identifier] # NOT OK
The variable's name must be on the left of the assignment operator (=) and
the value being assigned must be on the right.

• You should not refer to a variable until after its name defined and bound!
•
•

• For COMP110: expression's type must match the [ariableѣs declared t^pe
9

• Notice the right-hand side (RHS) of assignment is an expression!
[identifier] = [expression]

• Remember! Every expression evaluates to a single value at runtime.

• To know what value the variable name will be bound to, the
expression of an assignment statement must first be evaluated.

• If the following line ran:

1. The computer evaluates the RHS expression
2. The name age is bound to the result of it 10

Current Scope -
after age = 20 + 3 evaluates

age 23

• Initialization is the first time you assign a value to a variable.
• After initialization a variable is considered defined or "bound".

• Always, always, always initialize your variables!

• You can declare and initialize it in two steps:
lucky: int
lucky = 13

• Or, you can combine these steps into a single statement:
lucky: int = 13

• Notice there is some redundancy in this statement:
lucky: int = 13

• "Let lucky be an int variable that is initially assigned the int 13."

• If you combine declaration and initialization, a modern programming
language will infer the variable's type for you. So you can write:
lucky = 13

• You are encouraged to use type inference when you know a variable's
initial value at declaration.

• After you have declared a variable and
initiali_ed itѰ

• You can access ("read", "look up") a variableѣs
value in memory by its name

print(age)
• ѦFind the name age and print the value it is

bound to as output on the screen.ѧ

• Caution! This is very different than:
print("age");

• This would output the textual value "age" to the
screen!

Current Scope

age 20

• Consider the following assignment statement:

age = age + 1
Ѧage is assigned the current value of age plus oneѧ

Steps:
1. current value of age is accessed ("read")
2. The integer value 1 is added to it
3. age is bound to the resulting value in memory

1 2
Current Scope

age 23

Current Scope
after age = age + 1 evaluates

age 24

15

1. prin�ſũDona�ionsŪƀ

2. total: int = 0

3. total = total + 20

4. total = total + 50

5. print(total)

6. total = total + 40

7. print("total is " + str(total))

Imagine the following code:

1. Undefined

2. 0

3. 20

4. 70

5. 70

6. 110

7. 110

total's value in memory:

