
1. Site Preparation and Grading
2. Foundation Construction
3. Framing
4. Installation of windows and 

doors
5. Roofing
6. Siding
7. Rough electrical
8. Rough plumbing
9. ...
10. Now you have a house!

1. Pre-build the 
outside frame in 
8-foot sections

2. Stand each 8-foot 
section of the 
frame up

3. Insert braces for 
support

4. Repeat steps 3 
and 4 until entire 
perimeter is 
complete

A Framing "Function"



• A function definition is a subprogram

• Parameters are placeholders for inputs

• The function body is the algorithm, or 
sequence of steps, the function will 
follow when it is used

• A function may return a resulting value
• The function declares the type of return value

* Defining a function is like writing down a recipe. The 
definition has no immediate result. It is not until you 
call a function or follow a recipe that its steps are 
actually carried out.

Function Definition



• Imagine a function that takes in two int values and returns the largest.

• We can visualize it like the block below:
• Two parameters, both need to be type int 
• The function body is the purple box, its algorithm is opaque "abstracted away"
• The return type is an int

• So, how can we use of this building block in our program?

4



1. A function call is an expression that 
will carry out a function's definition 
and evaluate to its returned value.

2. Arguments are the actual input 
values assigned to the definition's 
parameters.

3. A bookmark is left at the function 
call expression. Control jumps into 
the function definition.

4. When control reaches the function's 
return statement, the returned result 
is substituted for the function call 
and control jumps back.

Function Call 
Expression Function Definition

Evaluates to 
Returned Value



• Imagine the function call expression on the right-hand side of this variable initialization statement.

• We know the expression must evaluate to a single value.

1. A function call expression needs to be evaluated
2. The call's arguments (2 and 3) are used as definition's input parameters
3. The max algorithm results

in the value 3 returning
4. The function call expression

evaluates to 3

6

Function Call Expression

Evaluates to:
3

Function Definition

2

3 3



def [name]([parameter0], ..., [parameterN]) -> [return_type]:

[function body statement0]

...

[function body statementN]

• Like variables, functions are given a name.
• Function names are governed by the same identifier rules as variables.

• Parameters are special variable declarations. 
• Each parameter declared has the following syntax 
• Parameters are placeholders for the inputs a function needs.

• Return type specifies the data type the function will return.

• Statements in the body block run only when a function is called.



def max(a: int, b: int) -> int:
"""Return the largest of two numbers."""
if a > b:

return a
else:

return b

Name Return Type

max int

Return 
Statements

Body

Parameters

Doc String



[name]([argument0], ..., [argumentN])

1. When a function call is encountered the processor drops a bookmark.

2. A function call's data type is its function definition's return type
For example: biggest: int = max(2, 3)
Since the max function's return type is int, a function call to max is an int 
expression. What it evaluates to will be assigned to biggest.

3. When control reaches a function call, it follows rules to jump into to the 
function call with input arguments and return with a result.
• We'll explore these rules in depth in upcoming lessons.

max(2, 3)

Example:



• Functions are a fundamental unit of process abstraction
• Learning to tie your shoe was process abstraction

• As a child, you struggled to learn the right series of steps
• Nowadays you can just "tie your shoe" without worrying about each step

• Defining a function is process abstraction
• Defining functions takes thoughtful effort to get the right series of steps
• Once correct, you can reuse your function by "calling" it, without worrying about its steps

• Functions help you break down and logically organize your programs

• Functions make it easy to reuse computations or sequences of steps
• Functions help you avoid repetitive, redundant code



In VSCode:

1. Open your COMP110 Workspace
• File > Open Recent > comp110-workspace

2. Open the File Explorer Pane
• comp110 > lessons

3. Create a new Python module in 
lessons directory
• Right click lessons
• Select new file
• Name it "ls11_function.py"

4. Copy over the program to the right

5. Run the program, experiment with 
some different argument values.

def max(a: int, b: int) -> int:
"""Return the largest of two numbers."""
if a > b:

return a
else:

return b

biggest: int = max(2, 3)
print(biggest)

arg0: int = int(input("arg0: "))
arg1: int = int(input("arg1: "))
print(max(arg0, arg1))


