Function Intuition: How-to Build a House

1. Site Preparation and Grading A Framing "Function"

2 ZounqatW' 1. Pre-build the

3. Framing outside frame in

4 dnstallatio‘: of windows and 8-foot sections

00rs 2. Stand each 8-foot

5. Roofing section of the

6. Siding frame up

7. Rough electrical 3. Insert braces for

8. Rough plumbing support

9. .. 4. Repeat steps 3

10. Now you have a house! and 4 until entire
perimeter is

complete

Function Definition Overview

* A function definition is a subprogram Suncian Badintion

« Parameters are placeholders for inputs @ parameter,
_ . . N ...
 The function body is the algorithm, or] — NS

sequence of steps, the function will
follow when it is used

« A function may return a resulting value
« The function declares the type of return value

* Defining a function is like writing down a recipe. The
definition has no immediate result. It is not until you
call a function or follow a recipe that its steps are
actually carried out.

Visualizing: A max Function Definition

 Imagine a function that takes in two int values and returns the largest.

« We can visualize it like the block below:
« Two parameters, both need to be type int

» The function body is the purple box, its algorithm is opaque “abstracted away"
* The return type is an int

« S0, how can we use of this building block in our program?

Function Call Expression Overview

1. A function call is an expressjon that
will carr?/ out a function's definition
and evaluate to its returned value.

2. Arguments are the actual input .
values assigned to the definition's Function Call

parameters. Expression Function Definition
argument, () I @ parameter,

Function Definition

3. A Dbookmark is left at the function o P
call expression. Control jumps into e I e

the function definition. argument, (;B & parameter, return €

4. When control reaches the function's Evaluates to
return statement, the returned result Returned Value
is substituted for the function call
and control jumps back.

Visualizing: A max Function Call Expression

 Imagine the function call expression on the right-hand side of this variable initialization statement.
biggest: int = max(2, 3)

« We know the expression max (2, 3) must evaluate to a single int value.

1. A function call expression needs to be evaluated
2. The call's arguments (2 and 3) are used as definition's input parameters

3. The max algorithm results
in the value 3 returning MmaXx (2 5 &) Ma X

Function Call Expression
O int

Function Definition

4. The function call expression
evaluates to 3

®int int @

Evaluates to:
3

Function Definition Syntax

def [name]([parametery,], ..., [parametery]) -> [return_type]:
[function body statement,]

[function body statement,]

» Like variables, functions are given a name.
» Function names are governed by the same identifier rules as variables.

« Parameters are special variable declarations.
« Each parameter declared has the following syntax [name]: [type]
« Parameters are placeholders for the inputs a function needs.

» Return type specifies the data type the function will return.

 Statements in the body block run only when a function is called.

Function Definition Example

Name

Parameters

Body

|

A

Return Type

def max(a: int, b: int) -> int:
"""Return the largest of two numbers."™"

if a > b:
return

else:
return

d

b

Return
Statements Doc String

The max function can be given two 1nt

values and will return the larger of the two.

Function Call Syntax

Example:

[name] ([argument,], ..., [argument]) max(2, 3)

1. When a function call is encountered the processor drops a bookmark.

2. A function call's data type is its function definition's return type

HIgYEInEMbiggest: int = max(2, 3)

Since the max function's return type is int, a function call to max is an int
expression. What it evaluates to will be assigned to biggest.

3. When control reaches a function call, it follows rules to jump into to the
function call with input arguments and return with a result.

« We'll explore these rules in depth in upcoming lessons.

What purpose do functions serve?

* Functions are a fundamental unit of process abstraction

 Learning to tie your shoe was process abstraction
 As a child, you struggled to learn the right series of steps
« Nowadays you can just "tie your shoe" without worrying about each step

 Defining a function is process abstraction
« Defining functions takes thoughtful effort to get the right series of steps
« Once correct, you can reuse your function by "calling" it, without worrying about its steps

 Functions help you break down and logically organize your programs

» Functions make it easy to reuse computations or sequences of steps
» Functions help you avoid repetitive, redundant code

Example Setup

def max(a: int, b: int) -»> int:
"""Return the largest of two numbers.

In VSCode; ifas>hb:
return a
1. Open your COMP110 Workspace else:

» File > Open Recent > comp110-workspace return b

2. Open the File Explorer Pane
« comp110 > lessons

biggest: int = max(2, 3)

print(biggest)
3. Create a new Python module in , . : N
lessons directory arg@: int = int(input(“"arge: "))
* Right click lessons argl: int = int(input("argl: "))
« Select new file print(max(argd, argl))

« Name it "Is11_function.py"

4. Copy over the program to the right

5. Run the.]program, experiment with
some different argument values.

