

• Parameters allow functions to
require additional pieces of
information in order to be
called

• Parameters are specified within
the parenthesis of function
definition

• Parameters look a lot like
variable declarations... because
they are!

• Parameters are local variables
to the function. Their names
are scoped inside of the
function body's block.

Function Definition
def max(x: int, y: int) -> int:

if x > y:
return x

else:
return y

Function Definition
def <name>([parameters]) -> <return_type>:

[statement0]
...
[statementN]

• When a function declares parameters, it is declaring:
"you must give me these extra pieces of information in order to call me"

• The function definition on the left says:
"in order to call max, you must give me two number values"

• In the usage to the right, when we call max, we must give it two int values.

max(3, 4)def max(x: int, y: int) -> int:
if x > y:

return x
else:

return y

max(3, 4, 50)

max(3)

• Arguments are the values we
assign to parameters

• The type of the arguments
must match the types of the
parameters

• We couldn't call max with str
values: max("oh","no")

max(3, 4)

These are arguments.

def max(x: int, y: int) -> int:
if x > y:

return x
else:

return y

These are parameters.

def max(x: int, y: int) -> int:
if x > y:

return x
else:

return y

For each function call…
1. Is name defined and bound to a

function?
• NameError if not!

2. Does it have the correct # of
arguments for function's
parameters?
• TypeError if not!

3. Its argument expressions are
evaluated.
• In this example, 8 and 9 are fully

evaluated literals.
4. In memory, a frame is

established on the call stack
and a Return Address (RA) Line
Number is recorded as a
"bookmark" of where we'll come
back to with a result.

L1. max(8, 9)

Notice the argument matches
the parameters in type

(number) and count (2)!

L1

max
RA

Stack Memory:

Argument values are assigned to
parameters:

1. This happens invisibly when the
code is running. You will never see
the lines to the right.

2. However, each time a call happens,
the processor assigns each
argument value to its parameter.

3. This is called "parameter passing"
because we are copying arguments
from one point in code into another
function's frame in memory.

L1. max(8, 9)

L1

max

RA

Stack Memory:
8x

9y

def max(x: int, y: int) -> int:
x = 8
y = 9
if x > y:

return x
else:

return y

L1. max(8, 9)

3. Finally, the processor
then jumps into the
function and
continues onto the
first line of the
function body block

L1

max

RA

Stack Memory:
8x

9y

def max(x: int, y: int) -> int:
x = 8
y = 9
if x > y:

return x
else:

return y

L1. max(8, 9)

The return statement is discussed
in full in another lesson, but for
completeness, when a return
statement is reached its
expression is evaluated and
added as the RV of the frame.

This value (9) is what the function
call expression max(8, 9) would
evaluate to. Control would resume
at the Return Address at L1.

L1

max

RA

Stack Memory:
8x

9y

def max(x: int, y: int) -> int:
x = 8
y = 9
if x > y:

return x
else:

return y

9RV

