


• General form: 
return <expression>

• Every function definition with a return type other than None must have 
at least one return statement

• The return expression's 
data type must match 
the return type of its 
function

def max(x: int, y: int) -> int:
if x > y:

return x
else:

return y



• IMPORTANT: When control reaches any return statement in the function 
definition, then the function call is complete. 

• The computer evaluates the expression and sends the Return Value
immediately back to the Return Address.

• Control jumps back to the Return Address and no additional 
statements in the function will evaluate in this call.

• This is ALWAYS, ALWAYS, ALWAYS true!



• Consider an 
alternate 
implementation of 
the max function

• Is it still correct?
What happens when 
y is greater than x?

• Notice there is no 
else branch.

def max(x: int, y: int) -> int:
if x > y:

return x

return y



def max(x: int, y: int) -> int:
if x > y:

return x

return y

L1. result: int = max(10, 5);

1

2
3

4

1. The max function is called with arguments:
10, 5

2. The processor jumps to max function.
• if x > y evaluates to True, enters then block

3. return Statement encountered. Expression 
a evaluates to 10. The function call is 
complete! 

4. Control sends Return Value (9) back to 
Return Address (L1).

5. max(10, 5) evaluates to 10 and is assigned 
to result.

L1

max

RA

Stack Memory:
10x

5y

9RV



• A function definition may have many return statements, however, for 
any given call only one return statement will be evaluated

• A function may contain a return statement inside of a loop, however, 
as soon as control encounters it , it will stop and return immediately

• Generally: as soon as the computer reaches any return statement 
within a function, that function call is completed.


