


• When you are authoring a function and want to play around with calls to it you 
currently have three options available:

1. Define in a Python REPL
• Downside: redefining the function each time you need to change it.

2. Define in a .py file and print out sample calls to it after its definition
• Upside: easy to modify and add additional calls
• Downside: if you print the return values of lots of calls it's painful to match up which calls led to 

which return values

3. New: Start a REPL that begins by evaluating the contents of a .py file
• Upside: easy to modify the definition and try calling it!
• Downside: must remember to quit the REPL and restart after changes to definitions.

• The command for #3 is: 
• The REPL will now have all globally defined names (such as functions!) available for you to try 

calling them.
2



import random

def main() -> None:
x: int = ____
y: bool = ____
z: str = ____
print(x, y, z)

def a() -> bool:
return random.randint(0, 1) == 0

def b(whole_number: str) -> int:
return int(whole_number)

def c(name: str, value: int) -> str:
return name + ": " + str(value)

main()

Q1: There are three variable 

initialization statements. In each blank 

(three subsequent pollev questions), 

write a valid function call to an 

appropriate function defined below. You 

may use any literal values you'd like as 

arguments.



Function Call
1. Verify and prepare for call

i. Is function name bound in your diagram or built-in?
ii. Fully evaluate each argument's expression
iii. Do arguments match function parameters?

2. Establish new frame on call stack
i. Add name of function
ii. Add RA (Return Address line #)
iii. Copy arguments to parameters bound in frame

3. Jump to first line of function definition

Function Return Statement
1. Evaluate returned expression

• Add RV (Return Value) in current stack frame

2. Jump back to function caller
i. Line is in RA (Return Address)
ii. The function call evaluates to last frame's RV

Function Definitions: Enter name in current 
frame and draw arrow to Function object on 
heap labeled 

Current Frame: The most recently added frame 
that has not returned. (No RV!)

Name Resolution: Look for name in the current 
frame. Not there? Check Globals frame!

Variable Initialization: Enter name and space 
for variable in current frame.

Variable Assignment: Find variable's location 
via name resolution, copy assigned value to it.

Variable Access: Find variable via name 
resolution, use value currently assigned to it.

1. Add columns for Call Stack, Heap, and Output
2. Add a Globals frame to Call Stack



01 def main() -> None:
02 x: int = 1
03 x += f(x + 1)
04 print("x: " + str(x))
05
06
07 def f(x: int) -> int:
08 x += 2
09 return x
10
11
12 main()


