

a: List[int] int int int int int int int int

index: 0 1 2 3 4 5 6 7

1. Each item in a List* is called an item or an element

2. An element is a single value addressed by its index ("Room #")

3. All elements in a List are of the same type**
• An array of ints, floats, strings, bools, and so on.

* Other languages may use the term array instead of list and may have subtly different characteristics.
** Technically, in Python, you can create lists where elements are of many different types. While this flexibility
sounds nice, the unpredictability of it is difficult to reason about in practice and is a common source of accidental
errors. It is generally advised for lists to work with a single type of data.

a:number[]

Index 0 1 2 3 4 5 6 7

1. Notation: array_name[index], i.e. a[1]

2. Indexing starts at [0] (not [1])
• First index always 0
• Last index always length of array – 1
• This is a convention shared by most programming languages

1. Import the type definition for List from the standard typing library*
from typing import List

2. You can declare a List of any type by

<identifier>: List[type]; – list of <type>
ages: List[int] – list of int values
words: List[str] – list of str values

3. You construct an empty list in two ways:
1. Use the List constructor with no argument: list()
2. Use List literal with no elements: []

4. These two initialization tasks are often done at the same time:

words: List[str] = []

• Initializing a List with a sequence of elements is frequently useful

• Using List Literal syntax, you can do this directly:
ages: List[int] = [18, 21, 20, 18, 19, 19]
words: List[str] = ["the", "quick", "brown", "fox", "jumped"]

• The List Literal syntax is a sequence of expressions, separated by
commas, whose types match the List's type.

• There are other ways to initialize non-empty Lists you'll soon learn!
1. Iterator-based initialization
2. List comprehensions

5

• Lists are a mutable data structure that can grow (or shrink) in length!
• Unlike Tuples and Strings!

• The append method adds an element to the end of a List
• The element to add is the method's only parameter
• The method returns None, because it mutates the List

• Examples:
ages.append(22)
words.append("over")

6

• The pop method removes an element at a given index from a List
• The index to remove is the method's only parameter
• The method returns the value previously stored at that index

• If no index is provided, the pop method defaults to the last index

• If the popped index is in the middle of the list, the indices of all following elements move
back by one to avoid a "gap" in the middle of a list.

• Example:
ages: List[int] = [18, 19, 20, 21]

print(ages.pop(1)) # 19
print(ages) # [18, 20, 21]
print(ages.pop()) # 21
print(ages) # [18, 20]

7

Operation Form Example

Declaration name: List[type] scores: List[int]

Construction
(Empty) name = [] scores = []

Construction
(Non-empty) name = [<comma separated values>] scores = [12, 0, 9]

of Elements len(name) len(scores)

Access Element name[index] scores[0]

Assign Element name[index] = expression scores[1] = 12

Append Element
Returns None.

name.append(expression) scores.append(13)

Remove Element
Returns removed element.

name.pop(index_expression) scores.pop(1)

