L1sts

Lists are a sequence of values of the same type...
...and can change at runtime!

a: List[int]| int int int int int int int int

index:

1. Each item in a List* is called an item or an element
2. Anelement is a single value addressed by its index ("Room #")

3. All elements in a List are of the same type**
 Anarray of ints, floats, strings, bools, and so on.

* Other languages may use the term array instead of list and may have subtly different characteristics.

** Technically, in Python, you can create lists where elements are of many different types. While this flexibilit
sounds nice, the unpredictability of it is difficult to reason about in practiCe and is a common source of accidental
errors. It is generally advised for lists to work with a single type of data.

Elements are addressed by the array variable's
name and index

a:number]] l
S

1. Notation: array_name[index],i.e. a[1]

Index

2. Indexing starts at [0] (not [1])
* Firstindex always 0
« Last index always length of array — 1
 This is a convention shared by most programming languages

Declaring and Initializing Lists

1. Import the type definition for List from the standard typing library*
from typing import List

2. You can declare a List of any type by

<identifier>: List[type]; - listof <type>
ages: List[int] - list of int values
words: List[str] - listof strvalues

3. You construct an empty list in two ways:
1. Use the List constructor with no argument: List ()
2. Use List literal with no elements: []

4. These two initialization tasks are often done at the same time;

words: List[str] = []

List Literals

* |nitializing a List with a sequence of elements is frequently useful

 Using List Literal syntax, you can do this directly:
ages: List[int] = [18, 21, 20, 18, 19, 19]
words: List[str] = ["the", "quick", "brown", "fox", "jumped"]

* The List Literal syntax is a sequence of expressions, separated by
commas, whose types match the List's type.

* There are other ways to initialize non-empty Lists you'll soon learn!
1. Iterator-based initialization
2. List comprehensions

Appending Elements to a List

« Lists are a mutable data structure that can grow (or shrink) in length!
 Unlike Tuples and Strings!

» The append method adds an element to the end of a List
* The element to add is the method's only parameter
« The method returns None, because it mutates the List

* Examples:
ages.append(22)
words.append("over")

Removing Elements from a List

The pop method removes an element at a given index from a List
* The index to remove is the method's only parameter
« The method returns the value previously stored at that index

If no index is provided, the pop method defaults to the last index

If the popped index is in the middle of the list, the indices of all following elements move
back by one to avoid a "gap” in the middle of a list.

Example:
ages: List[int] = [18, 19, 20, 21]

print(ages.pop(1)) # 19
print(ages) # [18, 20, 21]
print(ages.pop()) # 21
print(ages) # [18, 20]

Fundamental List Operations

““

Declaration name: List[type] scores: List[int]
Construction e = [Seores [
(Empty)
Construction
(Non-empty) name = [<comma separated values>] scores = [12, @, 9]
of Elements len(name) len(scores)
Access Element name[index] scores|[9]
Assign Element name[index] = expression scores[1l] = 12
Append Element .
Raturms None. name.append(expression) scores.append(13)
Remove Element name.pop(index_expression) scores.pop(1)

Returns removed element.

