

• As programs grow, you will organize them into packages and modules
• In Python, a package is a directory and a module is a Python file
• We will only cover the fundamentals, for a more complete story: https://docs.python.org/3/tutorial/modules.html

• Global names in modules are importable in other modules
• Environment diagram connections:
1.This is every name bound in the Globals frame!
2.Names include both function names and global variables/constants.

• Package/Module Paths follow directory structure with dot delimiters:
• Directory Path: comp110 > lessons > ls24_modules.py
• Package Path: comp110.lessons
• Module Path: comp110.lessons.ls24_module

https://docs.python.org/3/tutorial/modules.html

• To import names directly from a module:
from [module] import [global name0], ..., [global nameN]

• Suppose ls24_module defined a global function named sum:

def sum(input: List[int]) -> int:
Elided

• Example - To import sum from another module:

from comp110.lessons.ls24_module import sum

• Imported names a bound to the same definitions they were bound to in the from module.

3

• To import an entire module:
from [package] import [module name]

• After importing a module, you can reference its global names with the following form:
[module name].[global name]

• Continuing from the previous slide's example:
from comp110.lessons import ls24_module

• After doing so, you could call its sum function in the following way:
ls24_module.sum([1, 2, 3]) # Returns 6

• This is generally a better practice than importing names directly once you are comfortable with it.
• Why? It gives you access to all of a module's functions without introducing a lot of extra names into your module.

4

• When importing from a module, the entire module gets evaluated
• Even if you're importing a single name!

• When you import a module, a special global variable __name__ is a
string containing the module's path.
• In the previous example: "comp110.lessons.ls24_module"

• When you run a Python file as a module using the `-m` option, the
global variable __name__ is set to "__main__".

• The idiomatic way to write a Python module that is both "runnable"
and its names are easily importable is to add at the end:
if __name__ == "__main__":

main()
5

