

• What are the attributes of the range above?

• A start point that is inclusive

• A stop point that is exclusive

• A step that moves up by one

range

• range is a built-in sequence type in Python
• Just like str, Tuple, and List
• A range value is immutable, like str and Tuple
• Documentation: https://docs.python.org/3/library/stdtypes.html#ranges

• The range function constructs a range object

range(start: int, stop: int[, step: int = 1]) -> range

The step parameter defaults to 1 and is optional, as denoted by the brackets

3

https://docs.python.org/3/library/stdtypes.html#ranges

range
• Attributes are named values bundled in an object

• Attributes represent the state of an object
• Named like variables, unlike indexed items of a tuple or list. Attribute names are identifiers.
• Hold Values, also like variables, unlike methods which are special functions

• Attributes are accessed using the dot operator following the object:
[object].[attribute_name]

• Example:
>>> a_range = range(0, 10, 2)
>>> a_range.start
0
>>> a_range.stop
10
>>> a_range.step
2

• The range object's attributes are read-only, making a range an immutable object
4

range

start 0

stop 10

step 2

a_range
stack frame

range
• You can access items in a range's sequence by its index using subscription:

• range[0], range[1], ..., range[N]

• Example:
>>> a_range = range(0, 100, 10)
>>> a_range[0]
0
>>> a_range[1]
10
>>> a_range[9]
90
>>> a_range[10]
IndexError: range object index out of range

• Notice the range object's state is only its three attributes
• But as a sequence type, with subscription, it also behaves as if it is made of many more items.
• How? Abstraction! In this case the abstraction of a range is fully represented by just three attributes.

• This abstraction is possible through arithmetic
range[index] evaluates to range.start + (range.step * index)

5

range

start 0

stop 100

step 10

a_range
stack frame

range for..in
• Ranges are commonly used for indexing other sequences:

• Typically used with other lists and tuples

• Example:
>>> a_range = range(0, 6, 2)
>>> for i in a_range:
... print(i)
...
0
2
4

• Be careful: stop is not inclusive!
6

range
• Ranges are often used to index other sequences with for..in loops

7

Example: Index every other item with a step of 2.
>>> a_range = range(0, len(a_list), 2)
>>> for i in a_range:
... print(a_list[i])
a
c

Consider:
>>> a_list = ["a", "b", "c", "d"]

Example: Index in reverse.
>>> for i in range(len(a_list) - 1, -1, -1):
... print(a_list[i])
d
c
b
a

Notice: This use case is why stop is non-inclusive!

Abstraction Win: Works in most indexing scenarios and avoids accidental infinite loops!

