


• File System - a subsystem of your computer's operating system

• Made of directories and files that are persisted to a storage device
• Directories are often referred to and visualized as Folders in user interfaces.
• A computer/phone's storage device is different from memory in that when a device is shutdown 

the storage is maintained, but memory is reset/lost.
• Why the difference? Efficiency and speed! Storage is slower than memory.

• Directories are lists of files and... other directories.
• Thus forming a hierarchy.
• A directory's ability to relate with another directory makes it a recursive structure(!)

• Directories and files have textual names for humans
• Under the hood, data structures map these textual names to indexed addresses.



• When a program is running it is called a process
• Each process is running in "working directory"

• When python runs in your workspace, this is the workspace's directory

3



• There are many file types (plain text, rich text, photos, programs)
• Plain text documents have no formatting besides plain-old character data.
• Rich text documents are those like Word documents which encode formatting
• Our focus is plain text. Their direct translation to string values makes it easiest 

to work with.

• Plain text files can have different encodings. We'll use UTF-8. 
• Why different encodings? Related to the earlier idea of character codes.
• Short story: when space was more limited, efficient encoding mattered more. 

These days UTF-8 is a universal standard that works for most every written 
language, as well as emoji.

4



• Python's built-in open function opens a file and results in an IO object
• IO is an abbreviation for Input/Output

• Example:
path = "some/path/to/file.txt"
mode = "r"  # Read-only
io_handle = open(path, mode, encoding="utf8")

• The last parameter is a keyword argument and noticeably strange.
• It is beyond our concern right now, but the short story is the open function has a lot of optional 

parameters and by specifying encoding we are giving a specific one.

5



• A readable IO Handle object's read method returns the file's content.
• The read method returns a str.

• Example:
contents = io_handle.read()

• Warning: An I/O Handle is much like an iterator in that it is stateful.
• Generally: Storage I/O is a side-effect since it's either reading from or writing to storage 

outside of your program.
• Subsequent calls to read will result in an empty string because the handle has reached the 

end of file.

6



• A readable IO Handle to a plain text file is is iterable
• Each line, including the new line character at its end, is iterated over
• Can be used with for..in

• Example:
for line in io_handle:

...

• Warning: The new-line character "\n" is included at the end of each line.
• The str type's strip() method will get rid of it, as well as any other spaces on either end 

of the string.

7



• You must close an I/O handle once your need for it expires

io_handle.close()

• Why we call these handles is they are handles on a resource
• The operating system keeps track of what files are currently open and 

serves as a brokerage between your process and the file system.
• Closing an IO Handle frees up resources. If you had lots of file handles 

open and failed to close them your program would eventually error out.

8


