

set
• A Set is a container data type, like a List

• Duplicate objects are not allowed in a Set
• Adding the same object more than once is idempotent, meaning it

has no effect.

• Objects do not have a specific ordering in the Set
• An object is either a member of the set or it isn't
• At times objects may appear ordered, but you cannot assume this!

• Sets are mutable objects, like Lists
• You can add and remove objects from a Set

• Testing membership in a Set significantly more efficient than
in a List

2

Set

Objecta

Objectc

Objectb

set

• The Set type is defined in the typing package
• from typing import Set

• Set Literal Notation surrounds objects in curly braces
names: Set[str] = {"Cardi B", "Lil Jon", "Steve Carell"}

• The set function constructs a Set from an iterable
colors: Set[str] = set(["red", "green", "blue"])

odds: Set[int] = set(range(1, 10, 2))

3

Set

"Steve"

"Lil Jon"

"Cardi"

set

• Objects can be added to a set
names: Set[str] = {"Cardi B", "Lil Jon", "Steve Carell"}

names.add("Kaki")

• Objects can be removed from a set
colors: Set[str] = set(["red", "green", "blue"])

colors.remove("red")

• Test whether an object is in a set
odds: Set[int] = set(range(1, 10, 2))

1 in odds # Evaluates to True
2 in odds # Evaluates to False

4

• The Set data structure is inspired
by its namesake in discrete math

• Often taught and visualized in
terms of Venn diagrams

• Common set operations:
1. Union
2. Intersection
3. Difference

5

A B

Consider two Sets

A B
Union

A B
Intersection

A B
Difference

(A - B)

• The union method returns a new set with every object included from its operands

odds: Set[int] = set(range(1, 10, 2))
evens: Set[int] = set(range(0, 10, 2))
odds.union(evens) # Evaluates to {1, 2, 3, 4, 5, 6, 7, 8, 9}
evens.union(odds) # Evaluates to {1, 2, 3, 4, 5, 6, 7, 8, 9}

• Python's set type also overloads the | operator to result in union:

odds | evens # Evaluates to {1, 2, 3, 4, 5, 6, 7, 8, 9}

6

• The intersection method returns a set of only the objects shared by both of its
operands

one_to_seven: Set[int] = set(range(1, 8))

five_to_ten: Set[int] = set(range(5, 11))

one_to_seven.intersection(five_to_ten) # Evaluates to {5, 6, 7}

• Python's set type also overloads the & operator to result in intersection:

one_to_seven & five_to_ten # Evalutes to {5, 6, 7}

7

• The difference method returns a set of the left-hand set's objects excluding any in
the right-hand set's

one_to_seven: Set[int] = set(range(1, 8))

five_to_ten: Set[int] = set(range(5, 11))

one_to_seven.difference(five_to_ten) # Evaluates to {1, 2, 3, 4}
five_to_ten.difference(one_to_seven) # Evaluates to {8, 9, 10}

• Python's set type also overloads the - operator to result in difference:

one_to_seven - five_to_ten # Evalutes to {5, 6, 7}
five_to_ten - one_to_seven # Evalutes to {5, 6, 7}

8

• issubset - are each of set_a's members in set_b?
• Method: set_a.issubset(set_b)
• Operator overload: set_a <= set_b

• issuperset - are each of set_b's members in set_a?
• Method: set_a.issuperset(set_b)
• Operator overload: set_a >= set_b

• isdisjoint - do set_a and set_b share no objects in common?
• Method: set_a.isdisjoint(set_b)

9

