

class [ClassName]:

[attribute0_name]: [attribute0_type]

[attribute1_name]: [attribute1_type] = [attribute1_default_value]

…

[attributeN_name]: [attributeN_type]

• ClassNames begin with an uppercase letters, subsequent words capitalized
• Attributes are declared in the class body

• These are just like variable declarations
• Attributes can be assigned default values (as shown in attribute1)

• "A [ClassName] object will have an [name] attribute of type [type]".
• "A TwitterProfile object will have a followers attribute of type int"

class TwitterProfile:
handle: str
followers: number = 0
is_private: bool = True

• Here we are defining a class
named TwitterProfile.

• Every object of type
TwitterProfile will have three
properties:
• handle, followers, and is_private

• In defining a class, you've invented
a new type! You can now use it as a
type. For example, in a variable
declaration:

a_profile: TwitterProfile

• Unlike built-in types which have literal syntax, to establish an object whose type is
custom, you must "construct" it

• The constructor is a special function responsible for initializing an object from a class
• Every Python class has a default constructor.
• Soon you will learn to write your own.

Disclaimer: Constructing objects in Python does not require any special keywords. In many other languages (Java, C++, TypeScript,
PHP, ...) this same task requires using a special keyword often called new.

• For example, the second example above would be: a_profile = new TwitterProfile(); in those languages.

a_profile: TwitterProfile = TwitterProfile()

a_profile = TwitterProfile()

Heap Memory

• When the TwitterProfile() expression is
evaluated...

• ...the processor constructs a new object in heap
memory with space allocated for each attribute.

• It assigns the default values to each attribute
specified in the class.

• If a custom constructor is defined, it is evaluated.
• Finally, a reference to this object is returned and

assigned to the a_profile variable.

a_profile = TwitterProfile()

TwitterProfile

handle:
followers:
is_private:

0

True

Heap Memory

• By referencing the TwitterProfile variable's
name, followed by the dot operator, followed
by an attribute name, we are saying:

"Hey a_profile,
what is your handle attribute's value?"

• General form:
[object].[attribute]

print(a_profile.handle)

TwitterProfile

handle:
followers:
is_private:

"KrisJordan"

0

True

Heap Memory

• We can change an object's property value by
using the assignment operator.

Hey aProfile, your handle is now "ChancellorFolt"

• General form:
<object>.<property> = <value>;

aProfile.handle = "ChancellorFolt";

TwitterProfile

handle:
follower

s:isPrivat
e:

"ChancellorFolt
"

0

true

• Object-oriented Programming Terminology is language specific
• The concepts we're focusing on translate directly in other languages, even though other

languages will call them by different names.

• Python's attributes are:
• Java's instance variables
• C++'s data members
• JavaScript's object properties

• Objects are often referred to as instances of a class

• There can be subtle semantic differences between each language's rules around an
object's attributes, but these details are far less important than the general concepts.

8

