

• So far, you've used objects as compound data types
• i.e. to model the attributes of a Pizza

• You've written functions, separate from classes, that take in objects

• Object-oriented Programming concepts build on the concept of
classes

1. Methods allow you to give all objects special capabilities

2. Constructors allow you to fully initialize objects before their use

• A class defines a new Data Type
• The class definition specifies properties

• Instances of a class are called objects
• To create an object you must call its constructor: ClassName()

• Every object of a class has the same attributes, but with its own values

• Objects are reference-types
• Variables do not hold objects, but rather references to objects

• Let's implement and call the
say_hello method

"""An example of methods."""

class Person:

... # attributes elided

def say_hello(self) -> None:
print("Hello, world.")

def main() -> None:
"""Entrypoint of program."""
a_person: Person = Person()
a_person.say_hello()

if __name__ == "__main__":
main()

• A method is a special kind of
function defined in a class.
• The first parameter, idiomatically

named self, is special (coming next!)
• Everything else you know about a

function's parameters, return types,
and evaluation rules are the same with
methods.

• Once defined, you can call a
method on any object of that class
using the dot operator.
• Just like how attributes were

accessed except followed by
parenthesis and any necessary
arguments excluding one for self.

class ClassName:

... # Attributes Elided

def method_name(self, [params...]) -> retT:
<method body>

an_object: ClassName = ClassName()
an_object.method_name()

def say_hello() -> None:
print("Hello, world")

1. Let's define a silly function.

say_hello()

2. Once defined, we can then call it.

a_person: Person = Person()
a_person.say_hello()

4. Once defined, we can call the
method on any Person object:

class Person:

... # attributes elided

def say_hello(self) -> None:
print("Hello, world.")

3. Now, let's define that same function
as a method of the Person class.

self
1. Declare a name attribute of type

str

2. Initialize the name attribute of the
Person object you construct in the
main function

3. Update the say_hello method as
shown to the right. Notice the
conversion to an f-string!

4. Try constructing another person
object in main, initializing its
name attribute, and also calling
its say_hello method.

5. Check-in on PollEverywhere

def say_hello(self) -> None:
print(f"Hello, I'm {self.name}!")

• Consider the method call:

a_person.say_hello()
• The object reference is a_person
• The method being called is say_hello()

• The say_hello method's definition is:

class Person:
... # Attributes Elided
def say_hello(self) -> None:

print(f"Hello, I'm {self.name}!")

• Notice: The method has an untyped first parameter named self.
• Its type is implicitly the same as the class it is defined in.

• When a method call evaluates, the object reference is automagically its first argument.
• Thus, in the example above, self would refer to the same object that a_person does.

Globals
... Elided ...

The Stack The Heap

main
p0

Point

x 0.0

y 0.0

RA ...

Globals
... Elided ...

The Stack The Heap

main
p0

Point

x 0.0

y 0.0Point#__repr__

What's up with this pound sign? It's conventional
across many programming languages to identify
a method by ClassName#method.

RA ...

RA 17

this

Globals
... Elided ...

The Stack The Heap

main
p0

Point

x 0.0

y 0.0Point#__repr__

What's up with this pound sign? It's conventional
across many programming languages to identify
a method by ClassName#method.

RA ...

RA 17 self

Globals
... Elided ...

The Stack The Heap

main
p0

Point

x 0.0

y 0.0Point#__repr__

RA ...

RA 17 self

RV "0.0, 0.0"

When a method call is encountered on an object,

1. The processor will determine the class of the object and then confirm it:
1. Has the method being called defined in it.
2. The method call's arguments agree with the method's parameters.

2. Next it will initialize the RA, parameters, and the self parameter
• The first parameter is assigned a reference to the object the method is called on
• The first parameter of a method is idiomatically named self in Python

3. Finally, when the method completes, processor returns to the RA.

• In ls35_constructor.py, add the code right

• let's make it easy to move a Point relative to its
current position.

1. Declare a method of Point named translate.
• two parameters: dx and dy
• returns None
• method body should increase the point object's x and y

attributes by dx and dy, respectively

2. Call translate on Point p0 in the main
function using any values you'd like, before
printing

3. Once you've tried that it works, check-in on
PollEv.com/compunc

class Point:
x: float = 0.0
y: float = 0.0

def __repr__(self) -> str:
"""A str representation."""
return f"{self.x}, {self.y}"

def main() -> None:
p0 = Point()
print(p0.__repr__())

if __name__ == "__main__":
main()

• Different schools of thought in functional programming-style (FP) versus
object-oriented programming-style (OOP).
• Both are equally capable, but some problems are better suited for one style vs. other.

• FP tends to shine with data processing problems
• Data analysis programs like processing stats and are natural fits

• OOP is great for stateful systems like user interfaces, simulations, graphics

• Methods allow objects to have "built-in" functionality
• You don't need to import extra functions to work with an object, they are bundled.
• As programs grow in size, methods and OOP have some additional features to help

teams of programmers avoid accidental errors.

• An object's attributes must be initialized
before the object is usable

• A constructor allows you to
1. Specify initial values of attributes upon

creation of an object
2. Require certain attributes be decided by

the caller of the constructor

• A constructor is just a magic method
• Dunder-name is __init__
• Also has a first parameter named self
• Return type is omitted

• A class' constructor is automagically
called each time the Classname() call
expression is evaluated.
• "Magic" method because you do not call it

directly. Notice you never call __init__()
anywhere. The language calls it in its
evaluation of construction.

class Point:

x: float
y: float

def __init__(self, x: float, y: float):
self.x = x
self.y = y

a = Point(10, 0)

a = Point()
a.x = 10;
a.y = 0;

18

