




• An attribute can refer to another 
object of the same type

• Notice the class Node. The attribute 
named next is... another Node!

• This is a recursive data type!

• We'll discuss how to initialize a 
recursive property to avoid infinite 
recursion shortly...

class Node:
data: int
next: Node

Node

data "Hello"

next

Node

data "World"

next



• You can use this ability to form data structures with different properties and uses.
• In COMP110, you'll explore the Singly-linked List (left)
• In COMP210, you'll explore other data structures like Trees (right) and Graphs

class Node:
data: int
next: Node

Node

data 1

next

Node

data 2

next

class Element:
data: int
left: Element
right: Element

Element

data 2

left

right

Element

data 1

left

right

Element

data 3

left

right



• A classic, simple data structure in Computer Science

• Formed by chaining together a sequence of objects
• The first node is conventionally called the head
• Our focus is on singly-linked lists, meaning a Node only references the Node after it

• Linked Lists are more cumbersome to work with than Python's List
• However, they're amazing for understanding and exploring fundamentals including:
• None / "null" values
• References
• Recursive algorithms

Node

data "Hello"

next

Node

data "World"

next None

head



• If a Node refers to a next Node, and the next 
Node refers to another next Node, then when 
does it end?

• Recursive attributes are terminated with a 
None value.
• In many other languages this is called Null.
• It is a "reference to nowhere" that you can read as 

"this attribute refers to nothing."
• For static typing purposes, we declare 
Optional[RecursiveType]

• Our linked lists is "None terminated" or, 
commonly, "Null terminated"

class Node:
data: int
next: Optional[Node]

Node

data ""

next

None



1. You can construct a new Node at the front of another linked list
• via the Node constructor

2. You can access a linked list's first value
• via the data attribute

3. You can access the rest of the list, excluding the first Node
• via the next attribute

• That's it! These are the fundamental capabilities we need.
• Using these simple operations, you will write more advanced functions, or abstractions, to 

perform more sophisticated tasks with linked lists.
• Notice we are intentionally deciding to treat a constructed Node as immutable, we are not 

going to modify its data or next attributes after construction.



• How can we write a function that, given a List of any length, we 
can count the number of elements in it?

• Let's try it with pseudo-code first!

• Count Algorithm, Given any List
1. If the List is empty, then the count is 0
2. Else, count is 1 + the count algorithm applied to the rest of the List



When processing a recursive data structure recursively:

1. Always test to see if the structure is empty (equal to None)
• This is a base case!

2. Make the recursive call on a subpart of the structure
• With a singly linked list, this is always going to be the next Node.



14

def count(head: Optional[Node]) -> int:
if head is None:

return 0
else:

after_me = count(head.next)
return after_me + 1

1. Always 
check if list is 
empty! This is 
the base case.

2. Make the recursive call 
with the rest of the list.



15



True/False

• How can we write a function that, given a list list of any length and a search 
value, we can check to see if the list contains that value?

• Let's try it with pseudo-code first!

• Includes Algorithm, Given any list and a value V
1. If the List is empty, then the List does not include V, return false!
2. Else, 

1. If the first value in the List equals V, return true!
2. Else, run the includes algorithm on the rest of the list



• Let's implement the includes function together!



18

def includes(head: Optional[Node], needle: int) -> bool:
if head is None:

return False
elif head.data == needle:

return True
else:

return includes(head.next, needle)


